您好、欢迎来到现金彩票网!
当前位置:21点 > 自适应子波 >

利用自适应子波变换提高对微弱运动目标的检测

发布时间:2019-06-10 14:32 来源:未知 编辑:admin

  本文研究了长时间相参积累时微弱运动目标回波信号的特点,分析了常规检测方法的局限性,针对多项式相位信号模型,结合复正交线性相位子波基函数的设计,提出了一种基于自适应子波变换局域线性逼近的微弱运动目标检测方法,该方法具有自适应频带划分,快速算法实现,计算量低,并对统计分布的杂散分量具有自动抑制的特点.理论分析和计算机仿真结果验证了该方法的有效性.

  在雷达、声纳等探测系统中对微弱运动目标的检测一直是比较困难的,主要原因是这类目标的回波强度小且多普勒频率变化复杂.为了检测强背景中的运动目标,除了常规杂波抑制、抗干扰和降低系统噪声等措施外,一种比较有效的方法是利用相参积累技术来增强接收回波,即用时间换取能量.一般而言相参积累时间受目标穿越波束和回波包络移动等因素的影响,而积累的性能主要取决于目标回波的相干性.通常,若目标作机动飞行,则随波束驻留时间的增加,则目标回波相干性变差,此时传统的谱分析方法是失效的.为此人们提出了基于线性调频回波模型的各种检测方法[1,2],并建立了快速算法[3].实际上,在相对较长的一段观测时间内由于目标的复杂运动而产生的回波信号已不能用线性调频模型去近似.因此,有必要研究在这种情况下的信号检测问题.本文基于推广的多项式相位回波模型,提出了利用自适应子波变换作线性逼近对目标回波信号进行长时间相参积累的检测方法.由于回波信号的频率变化呈现非线性特征,不同的时间上多普勒变化特征不同,利用自适应子波划分,可以将信号全局多普勒变化转化为局域线性逼近,从而以区间时变的多普勒相参技术取代常规线性调频模型下的RWT技术.另外AWT方法存在快速变换,其分岔树结构易于实现,对回波的局域优化分割还有助于包络补偿的实现,同时,多尺度多分辨性能使得AWT保持着对统计分布型杂散分量的自动抑制能力,结合子带信号能量的RWT技术,可以在不增加太多运算量的同时,得到对微弱运动目标良好的相参积累检测性能.

  为了检测隐身等微弱运动目标信号,可以采用稀布阵综合脉冲孔径雷达的波束驻留工作方式或让常规雷达工作在“烧穿”方式下,以增加回波脉冲数.已知运动目标回波信号的多普勒频率为

  其中λ为雷达波长,V为目标的运动速度,φ(t)为目标运动方向与雷达视线的夹角.常规波束扫描雷达在一次扫描中接收到的脉冲数由于受天线扫描的影响而较少,对这些回波,可以认为其fd是不变的.但是在固定波束照射下,由于观测时间的增加,即使对匀速直线运动的目标,由于φ(t)的变化而产生的多普勒频率的变化已不能忽略,其大小为

  式中θb为天线为目标匀速运动方向与波束轴线)仅仅假设目标为匀速运动的情况,实际上,在数秒的相参时间内,目标的运动情况可能包括加减速及机动拐弯等复杂运动.若目标作匀加速运动(机动拐弯的情况类似),即V(t)=V0+at,a为瞬时加速度,可以导出其fd的变化率为:

  其中R为目标距离.由于在回波相参时间内,φ(t)∈[0,θb],且R很大,上式中忽略了(1/R)的高次项的影响.式(3)表明由于目标相对雷达视角作匀加速机动而导致μf为高阶时变的函数.因此,为了分辨高阶时变相位引入的非线性频率调制,充分利用目标相干性,则需要引入频率局域分辨的思想,而利用传统方法实现对非线性调频信号和相参积累,实质是一种全域分辨,得不到应有的频率分辨力.

  由于不同子波基函数的分辨性能不同,选择有良好局域性能的子波基是重要的.为了有利于长时间雷达相参回波的积累,我们希望子波基函数具有线性相位、有限冲激响应、正交分解的特点并存在快速变换实现.

  从Daubechies的FIR滤波器设计可知,其尺度函数满足①紧支性,②正交性的约束关系.因此,只要能找到一个合适的尺度函数,在一定准则的约束下,就能得到信号在多分辨空间的逼近,从而构造出相应的正交子波分解.Mallat给出了下面的关系,使得我们能够利用滤波器组来产生相应的尺度和子波函数.

  为由ck定义的离散滤波器的传递函数,则正交条件可表示为H0(ω)2+H0(ω+π)2=1,且H0(0)=1.若ck,k=1,…,N且H0(ω)≠0,则

  0(ω+π),“-”表示复共轭.并不是具有任意冲缴响应的滤波器都可以用来产生子波,一般要求H0(ω)应是一半带低通滤波器,则H0(z)在z=-1处至少应有一个零点存在.若H0(z)可以分解为下列形式:

  Daubechies子波皆为满足上述条件的实多项式的解,但不具备线性或广义线性相位特性,这样在处理中不可避免地带来了新的相位分量,从而影响子带信号的相参积累.

  为了构造线性相位或零相位复值正交子波变换,Lawton考虑了对称性条件[4],并由此得到了一定条件下(如N为偶数)时的复值子波系数.这里通过定义一种满足式(5),(6)以及Daubechies收敛条件的有效多项式,来获得一般条件下复对称正交子波函数的构造.可以证明,常规的实对称Haar子波,Daubiechies子波及Lawton复值子波函数,均是该多项式生成子波函数的特殊情况.定义:

  多项式PN(z)的2J个根给出了不同的解,由此可生成不同的子波基.通过对PN(z)作因式分解,可得:

http://hitomisiri.com/zishiyingzibo/26.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有